# metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Tetrakis(phenylethynyl)tin(IV)

### Mohammed Lahcini,<sup>a</sup> Minna T. Räisänen,<sup>b</sup>\* Pascal M. Castro,<sup>c</sup> Martti Klinga<sup>b</sup> and Markku Leskelä<sup>b</sup>

<sup>a</sup>Université Cadi Ayyad, Faculté des Sciences et Techniques Marrakech, Département de Chimie, Laboratoire de Chimie Bio-Organique et Macromoléculaire, BP 549 Marrakech, Morocco, <sup>b</sup>University of Helsinki, Department of Chemistry, Laboratory of Inorganic Chemistry, FI-00014 Helsinki, Finland, and <sup>c</sup>Institut Català d'Investigació Química (ICIQ), Avinguda Països Catalans, 16, E-43007 Tarragona, Spain

Correspondence e-mail: minna.t.raisanen@helsinki.fi

Received 7 October 2007; accepted 15 October 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.011 Å; R factor = 0.049; wR factor = 0.078; data-to-parameter ratio = 19.2.

The asymmetric unit of the crystal structure of the title compound,  $[Sn(C_8H_5)_4]$ , consists of one fourth of a discrete tin complex and one half of another which both possess nearly ideal tetrahedral symmetry; the site symmetries of the two Sn atoms are  $\overline{4}$  and 2. The bond angles at all acetylide C atoms are almost linear. The Sn-C distances [2.076 (6) and 2.065 (6)-2.069 (6) Å in the two complexes) are short when compared to the sum of the covalent radii of C and Sn (2.177 Å), but consistent with another tetrakis(alkynyl)tin complex. The acetylenic bond distances [1.196 (7) and 1.183 (7)-1.207 (7) Å] are consistent with a triple C=C bond. Therefore, despite the short Sn-C distances, the ligands are mainly  $\sigma$ -bonded to the metal. In the solid state, these complexes form a threedimensional network *via* agostic C–H interactions as a phenyl proton in the ortho position interacts with the acetylenic carbon in the  $\alpha$  position to the tin center.

#### **Related literature**

For related literature, see: Chen & Woo (1998); Dallaire et al. (1993); Jousseaume et al. (1998); Lahcini et al. (2004); Touchard et al. (1997); Kottke & Stalke (1993).



#### **Experimental**

#### Crystal data

| $[Sn(C_{*}H_{5})_{4}]$       |  |
|------------------------------|--|
| $M_r = 523.17$               |  |
| Tetragonal, I4               |  |
| a = 13.689 (1)  Å            |  |
| c = 20.098 (1)  Å            |  |
| $V = 3766.1 (4) \text{ Å}^3$ |  |

#### Data collection

| Nonius KappaCCD diffractometer             |
|--------------------------------------------|
| Absorption correction: multi-scan          |
| (SADABS; Sheldrick, 1996)                  |
| $T_{\rm min} = 0.747, T_{\rm max} = 0.904$ |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.049$ | $\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$  |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.078$               | $\Delta \rho_{\rm min} = -0.78 \text{ e } \text{\AA}^{-3}$ |
| S = 0.93                        | Absolute structure: Flack (1983),                          |
| 4311 reflections                | 2075 Friedel pairs                                         |
| 224 parameters                  | Flack parameter: 0.00 (3)                                  |
| H-atom parameters constrained   |                                                            |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                                                                            | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|------------------------------------------------------------------------------------------------------------------------|------|-------------------------|-------------------------|-----------------------------|
| $\begin{array}{c} \hline C28 - H28A \cdots C1 \\ C18 - H18A \cdots C11^{i} \\ C8 - H8A \cdots C21^{ii} \\ \end{array}$ | 0.95 | 2.92                    | 3.869 (9)               | 174                         |
|                                                                                                                        | 0.95 | 2.89                    | 3.736 (11)              | 149                         |
|                                                                                                                        | 0.95 | 2.85                    | 3.795 (9)               | 171                         |

Z = 6

Mo  $K\alpha$  radiation  $\mu = 1.03 \text{ mm}^-$ T = 173 (2) K

 $R_{\rm int}=0.070$ 

 $0.30 \times 0.10 \times 0.10$  mm

9860 measured reflections 4311 independent reflections

2474 reflections with  $I > 2\sigma(I)$ 

Symmetry codes: (i) -y, x, -z + 1; (ii) -x, -y, z.

Data collection: COLLECT (Nonius, 2002); cell refinement: COLLECT; data reduction: COLLECT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2532).

#### References

- Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Chen, J. & Woo, L. K. (1998). Inorg. Chem. 37, 3269-3275.
- Dallaire, C., Brook, M. A., Bain, A. D., Frampton, C. S. & Britten, J. F. (1993). Can. J. Chem. 71, 1676-1683.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jousseaume, B., Lahcini, M., Jaumier, P., Sanchez, C. & Ribot, F. (1998). Chem. Commun. pp. 369-370.
- Kottke, T. & Stalke, D. J. (1993). J. Appl. Cryst. 26, 615-619.
- Lahcini, M., Castro, P. M., Kalmi, M., Leskelä, M. & Repo, T. (2004). Organometallics, 23, 4547-4549.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Touchard, D., Haquette, P., Gusemi, S., Le Pichon, L., Daridor, A., Toupet, L. & Dixneuf, P. A. (1997). Organometallics, 16, 3640-3648.

Acta Cryst. (2007). E63, m2762 [doi:10.1107/S1600536807050507]

# Tetrakis(phenylethynyl)tin(IV)

## M. Lahcini, M. T. Räisänen, P. M. Castro, M. Klinga and M. Leskelä

#### Comment

There has been much recent interest in tetrakis(alkynyl)tin(IV) as new precursor for preparation of tin-alkoxide and sol-gel chemistry for the preparation of tin-oxide (Jousseaume et al., 1998). Recently, we demonstrated that tetrakis(phenylethynyl)tin(IV) is an efficient initiator for ring-opening polymerization of lactide and  $\varepsilon$ -caprolactone providing high activity and high molar mass polymers (Lahcini et al., 2004). Here, we describe the crystal structure of tetrakis(phenylethynyl)tin. It crystallized in a tetragonal space group  $I\overline{4}$ , which reflects high symmetry of the molecule. The asymmetric unit cell consists of one fourth of a discrete tin complex (labeled as a Sn1 in Fig. 1) and one half of another one (Sn2) which both posses nearly ideal tetrahedral symmetry. The Sn(1)—C(2) (176.5 (5)°) and C(1)—C(2)—C(3)  $(176.0 (7)^{\circ})$  angles in Sn1 and the Sn(2)—C(11)—C(12) (171.1 (5)^{\circ}) and C(11)—C(12)—C(13) (178.0 (8)^{\circ}) as well as the Sn(2)—C(21)—C(22) (177.4 (6)°) and C(21)—C(22)—C(23) (176.2 (8)°) angles in Sn2 illustrate a rather linear coordination of the acetylides on the Sn centers. The Sn-C distances (2.076 Å in Sn1 and 2.065-2.069 Å in Sn2) are short when compared to the sum of the covalent radii of C and Sn (2.177 Å), but coherent with another tetrakis(alkynyl)Sn complex, Me<sub>3</sub>Si—C≡C—Sn (2.067 Å) (Dallaire et al., 1993). The acetylenic bond distances (1.196 (7) Å in Sn1 and 1.183 (7)–1.207 (7) Å in Sn2) are consistent with a triple C=C bond and comparable to previously reported phenylethynyl complexes, e.g. trans-[(NH<sub>3</sub>)Ru(C≡CPh)(Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PPH<sub>2</sub>)<sub>2</sub>] (1.187 (7) Å) (Touchard et al., 1997) and amidotin porphyrin (TTP)Sn(C≡CPh)<sub>2</sub> (1.197 (3) Å) (Chen & Woo, 1998). Therefore, despite of the short Sn—C distances, the ligands are mainly  $\sigma$ -bonded to the metal. In the solid state these complexes form a three-dimensional network via agostic C—H interactions as illustrated in Fig. 1; a phenyl proton in *ortho* position interacts with the acetylenic carbon in  $\alpha$  position to the tin center (see table of hydrogen bonds).

#### **Experimental**

The title compound was synthesized according to a published procedure (Dallaire *et al.*, 1993). Treatment of tin tetrachloride with 4 equivalents of phenyllithium in toluene led to a corresponding tetrakis(alkynyl)tin(IV). Crystals suitable for solid state structure determination were obtained by recrystallization from toluene.

#### Refinement

Crystal selected for the X-ray measurement at 120 K was mounted on a glass fibre using the oil drop method (Kottke & Stalke, 1993). All H atoms were introduced in their calculated positions (C—H = 0.95 Å,  $U_{iso}$ =1.2 times the  $U_{eq}$  of the carrier atom) and refined with fixed geometry with respect to their carrier atoms.

## **Figures**



Fig. 1. A view of tetrakis(phenylethynyl)tin(IV), showing the atom-labelling scheme. Thermal ellipsoids are depicted at 50% propability level. Atoms C11A—C18A and C21A—C28A are generated with (-x,-y,z) and atoms C1AA—C8AA and C1B—C8B with (x,-y,-z) symmetry operator.



Fig. 2. Intermolecular agostic interactions in the structure of tetrakis(phenylethynyl)tin(IV) are shown as dotted lines. These distances are close to the sum of van der Waals radius of carbon and hydrogen atoms, namely C1—H28A 2.923 Å, C11—H18A (y,-x,1 – z) 2.888 Å and C21—H8A (-x,-y,z) 2.853 Å.

# Tetrakis(phenylethynyl)tin(IV)

| Crystal data                 |                                                 |
|------------------------------|-------------------------------------------------|
| $[Sn(C_8H_5)_4]$             | Z = 6                                           |
| $M_r = 523.17$               | $F_{000} = 1572$                                |
| Tetragonal, 14               | $D_{\rm x} = 1.384 {\rm ~Mg~m}^{-3}$            |
| Hall symbol: I -4            | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| a = 13.689 (1)  Å            | Cell parameters from 9860 reflections           |
| b = 13.689 (1)  Å            | $\theta = 3.4 - 27.6^{\circ}$                   |
| c = 20.098 (1)  Å            | $\mu = 1.03 \text{ mm}^{-1}$                    |
| $\alpha = 90^{\circ}$        | T = 173 (2)  K                                  |
| $\beta = 90^{\circ}$         | Needle, colourless                              |
| $\gamma = 90^{\circ}$        | $0.30 \times 0.10 \times 0.10 \text{ mm}$       |
| $V = 3766.1 (4) \text{ Å}^3$ |                                                 |

### Data collection

| Nonius KappaCCD<br>diffractometer                              | 4311 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2474 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.070$                  |
| T = 173(2)  K                                                  | $\theta_{max} = 27.6^{\circ}$          |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 3.4^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -15 \rightarrow 17$               |
| $T_{\min} = 0.747, T_{\max} = 0.904$                           | $k = -17 \rightarrow 10$               |
| 9860 measured reflections                                      | $l = -25 \rightarrow 17$               |
|                                                                |                                        |

Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                |
|----------------------------------------------------------------|-------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H-atom parameters constrained                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.049$                                | $w = 1/[\sigma^2(F_o^2) + (0.01P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.078$                                              | $(\Delta/\sigma)_{max} < 0.001$                                         |
| <i>S</i> = 0.93                                                | $\Delta \rho_{max} = 0.75 \text{ e } \text{\AA}^{-3}$                   |
| 4311 reflections                                               | $\Delta \rho_{min} = -0.78 \text{ e } \text{\AA}^{-3}$                  |
| 224 parameters                                                 | Extinction correction: none                                             |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 2075 Friedel pairs                    |
| Secondary atom site location: difference Fourier map           | Flack parameter: 0.00 (3)                                               |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | У          | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|------------|------------|---------------|-------------------------------|
| Sn1 | 0.0000     | 0.0000     | 0.0000        | 0.02556 (18)                  |
| C1  | 0.1148 (4) | 0.0423 (4) | 0.0610(2)     | 0.0315 (16)                   |
| C2  | 0.1773 (5) | 0.0677 (4) | 0.0988 (3)    | 0.0268 (15)                   |
| C3  | 0.2494 (6) | 0.1040 (7) | 0.1469 (5)    | 0.028 (2)                     |
| C4  | 0.3493 (5) | 0.0952 (5) | 0.1299 (3)    | 0.0392 (16)                   |
| H4A | 0.3687     | 0.0664     | 0.0890        | 0.047*                        |
| C5  | 0.4185 (7) | 0.1299 (7) | 0.1749 (4)    | 0.049 (2)                     |
| H5A | 0.4860     | 0.1278     | 0.1640        | 0.058*                        |
| C6  | 0.3886 (6) | 0.1674 (5) | 0.2356 (3)    | 0.0466 (19)                   |
| H6A | 0.4361     | 0.1904     | 0.2664        | 0.056*                        |
| C7  | 0.2913 (6) | 0.1719 (5) | 0.2520 (3)    | 0.0474 (18)                   |
| H7A | 0.2712     | 0.1975     | 0.2938        | 0.057*                        |
| C8  | 0.2228 (5) | 0.1384 (5) | 0.2065 (3)    | 0.0328 (17)                   |
| H8A | 0.1555     | 0.1400     | 0.2180        | 0.039*                        |
| Sn2 | 0.0000     | 0.0000     | 0.312944 (19) | 0.03048 (15)                  |
| C11 | 0.1112 (4) | 0.0463 (4) | 0.3751 (3)    | 0.0328 (15)                   |
| C12 | 0.1652 (5) | 0.0739 (4) | 0.4170 (3)    | 0.0345 (16)                   |

| C13  | 0.2279 (7) | 0.1074 (7)  | 0.4695 (5) | 0.033 (3)   |
|------|------------|-------------|------------|-------------|
| C14  | 0.3267 (6) | 0.1345 (5)  | 0.4593 (3) | 0.0381 (19) |
| H14A | 0.3544     | 0.1289      | 0.4161     | 0.046*      |
| C15  | 0.3827 (5) | 0.1684 (5)  | 0.5105 (5) | 0.048 (2)   |
| H15A | 0.4491     | 0.1853      | 0.5027     | 0.058*      |
| C16  | 0.3428 (5) | 0.1786 (5)  | 0.5744 (3) | 0.0395 (17) |
| H16A | 0.3823     | 0.2022      | 0.6098     | 0.047*      |
| C17  | 0.2456 (5) | 0.1544 (5)  | 0.5862 (3) | 0.0458 (19) |
| H17A | 0.2175     | 0.1623      | 0.6291     | 0.055*      |
| C18  | 0.1915 (7) | 0.1186 (7)  | 0.5338 (4) | 0.039 (2)   |
| H18A | 0.1256     | 0.1005      | 0.5419     | 0.047*      |
| C21  | 0.0450 (4) | -0.1128 (5) | 0.2520 (3) | 0.0374 (17) |
| C22  | 0.0675 (5) | -0.1793 (5) | 0.2157 (3) | 0.0389 (17) |
| C23  | 0.0911 (7) | -0.2566 (7) | 0.1682 (4) | 0.034 (2)   |
| C24  | 0.0938 (6) | -0.3541 (6) | 0.1889 (4) | 0.072 (3)   |
| H24A | 0.0782     | -0.3718     | 0.2333     | 0.086*      |
| C25  | 0.1202 (9) | -0.4245 (7) | 0.1420 (4) | 0.082 (4)   |
| H25A | 0.1194     | -0.4915     | 0.1543     | 0.098*      |
| C26  | 0.1471 (5) | -0.3998 (5) | 0.0790 (3) | 0.050 (2)   |
| H26A | 0.1649     | -0.4495     | 0.0483     | 0.060*      |
| C27  | 0.1488 (4) | -0.3049 (5) | 0.0597 (3) | 0.0363 (16) |
| H27A | 0.1680     | -0.2878     | 0.0158     | 0.044*      |
| C28  | 0.1220 (5) | -0.2327 (5) | 0.1051 (3) | 0.0315 (17) |
| H28A | 0.1252     | -0.1660     | 0.0923     | 0.038*      |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$   | $U^{22}$   | U <sup>33</sup> | $U^{12}$   | $U^{13}$   | $U^{23}$   |
|-----|------------|------------|-----------------|------------|------------|------------|
| Sn1 | 0.0240 (3) | 0.0240 (3) | 0.0287 (4)      | 0.000      | 0.000      | 0.000      |
| C1  | 0.032 (4)  | 0.039 (4)  | 0.024 (4)       | -0.007 (3) | -0.001 (3) | 0.000 (3)  |
| C2  | 0.030 (4)  | 0.025 (4)  | 0.025 (4)       | 0.000 (3)  | 0.001 (3)  | -0.001 (3) |
| C3  | 0.020 (5)  | 0.028 (5)  | 0.037 (6)       | 0.002 (4)  | -0.001 (4) | 0.017 (4)  |
| C4  | 0.027 (4)  | 0.051 (5)  | 0.040 (4)       | 0.003 (4)  | 0.004 (4)  | -0.001 (4) |
| C5  | 0.040 (5)  | 0.060 (6)  | 0.046 (6)       | 0.000 (4)  | -0.001 (4) | 0.014 (4)  |
| C6  | 0.050 (5)  | 0.030 (4)  | 0.060 (5)       | -0.012 (4) | -0.025 (4) | 0.008 (3)  |
| C7  | 0.059 (6)  | 0.036 (4)  | 0.046 (4)       | -0.004 (4) | -0.009 (4) | 0.003 (3)  |
| C8  | 0.027 (4)  | 0.039 (5)  | 0.033 (4)       | -0.003 (4) | -0.004 (3) | 0.005 (3)  |
| Sn2 | 0.0280 (8) | 0.0333 (8) | 0.0302 (3)      | 0.0035 (9) | 0.000      | 0.000      |
| C11 | 0.033 (4)  | 0.045 (4)  | 0.020 (3)       | -0.004 (3) | 0.003 (3)  | 0.009 (3)  |
| C12 | 0.034 (5)  | 0.037 (4)  | 0.032 (4)       | 0.007 (3)  | 0.003 (3)  | 0.007 (3)  |
| C13 | 0.037 (6)  | 0.021 (5)  | 0.043 (5)       | 0.005 (4)  | 0.001 (4)  | -0.002 (3) |
| C14 | 0.040 (6)  | 0.036 (5)  | 0.039 (4)       | 0.007 (4)  | 0.005 (4)  | 0.000 (3)  |
| C15 | 0.038 (4)  | 0.042 (4)  | 0.065 (7)       | -0.009 (3) | -0.005 (5) | 0.000 (5)  |
| C16 | 0.043 (5)  | 0.031 (4)  | 0.045 (4)       | 0.007 (4)  | -0.011 (4) | -0.006(3)  |
| C17 | 0.062 (6)  | 0.038 (5)  | 0.037 (4)       | -0.004 (4) | 0.004 (4)  | -0.002 (3) |
| C18 | 0.034 (6)  | 0.028 (5)  | 0.055 (6)       | 0.000 (5)  | -0.005 (4) | -0.004 (3) |
| C21 | 0.035 (5)  | 0.043 (5)  | 0.034 (4)       | 0.004 (4)  | -0.003 (3) | -0.001 (3) |
| C22 | 0.032 (5)  | 0.049 (5)  | 0.036 (4)       | 0.009 (4)  | 0.003 (3)  | 0.009 (3)  |

| C23                                    | 0.016 (4)     | 0.043 (6)   | 0.044 (7) | 0.002 (4)    | 0.009 (3) | -0.002 (4) |
|----------------------------------------|---------------|-------------|-----------|--------------|-----------|------------|
| C24                                    | 0.114 (8)     | 0.043 (6)   | 0.058 (6) | 0.010 (5)    | 0.029 (6) | 0.005 (5)  |
| C25                                    | 0.153 (10)    | 0.032 (6)   | 0.061 (7) | 0.008 (6)    | 0.031 (6) | 0.002 (5)  |
| C26                                    | 0.070 (6)     | 0.031 (5)   | 0.050 (5) | 0.008 (4)    | 0.011 (4) | -0.003 (3) |
| C27                                    | 0.025 (4)     | 0.054 (5)   | 0.030 (4) | 0.005 (3)    | 0.001 (3) | 0.005 (3)  |
| C28                                    | 0.030 (4)     | 0.029 (5)   | 0.035 (4) | 0.010 (3)    | -0.006(3) | 0.000 (3)  |
|                                        |               |             |           |              |           |            |
| Geometric paran                        | neters (Å, °) |             |           |              |           |            |
| Sn1—C1                                 |               | 2.076 (6)   | (         | C13—C14      |           | 1.417 (11) |
| Sn1-C1 <sup>i</sup>                    |               | 2.076 (6)   | (         | C14—C15      |           | 1.364 (10) |
| Sn1—C1 <sup>ii</sup>                   |               | 2.076 (6)   | (         | C14—H14A     |           | 0.9500     |
| Sn1—C1 <sup>iii</sup>                  |               | 2.076 (6)   | (         | C15—C16      |           | 1.404 (12) |
| C1—C2                                  |               | 1.196 (7)   | (         | С15—Н15А     |           | 0.9500     |
| C2—C3                                  |               | 1.467 (10)  | (         | C16—C17      |           | 1.391 (9)  |
| С3—С8                                  |               | 1.339 (10)  | (         | C16—H16A     |           | 0.9500     |
| C3—C4                                  |               | 1.415 (10)  | (         | С17—С18      |           | 1.379 (10) |
| C4—C5                                  |               | 1.393 (10)  | (         | С17—Н17А     |           | 0.9500     |
| C4—H4A                                 |               | 0.9500      | (         | C18—H18A     |           | 0.9500     |
| C5—C6                                  |               | 1.387 (9)   | (         | C21—C22      |           | 1.207 (7)  |
| C5—H5A                                 |               | 0.9500      | (         | C22—C23      |           | 1.461 (11) |
| C6—C7                                  |               | 1.374 (8)   | (         | C23—C28      |           | 1.377 (10) |
| С6—Н6А                                 |               | 0.9500      | (         | C23—C24      |           | 1.398 (12) |
| С7—С8                                  |               | 1.387 (8)   | (         | C24—C25      |           | 1.396 (10) |
| C7—H7A                                 |               | 0.9500      | (         | С24—Н24А     |           | 0.9500     |
| C8—H8A                                 |               | 0.9500      | (         | C25—C26      |           | 1.360 (9)  |
| Sn2—C21                                |               | 2.065 (6)   | (         | С25—Н25А     |           | 0.9500     |
| Sn2—C21 <sup>11</sup>                  |               | 2.065 (6)   | (         | C26—C27      |           | 1.356 (8)  |
| Sn2—C11                                |               | 2.069 (6)   | (         | C26—H26A     |           | 0.9500     |
| Sn2—C11 <sup>ii</sup>                  |               | 2.069 (6)   | (         | С27—С28      |           | 1.394 (8)  |
| C11—C12                                |               | 1.183 (7)   | (         | С27—Н27А     |           | 0.9500     |
| C12—C13                                |               | 1.435 (10)  | (         | C28—H28A     |           | 0.9500     |
| C13—C18                                |               | 1.393 (8)   |           |              |           |            |
| C1—Sn1—C1 <sup>i</sup>                 |               | 110.43 (15) | C         | C14—C13—C12  |           | 123.3 (8)  |
| C1—Sn1—C1 <sup>ii</sup>                |               | 107.6 (3)   | (         | C15—C14—C13  |           | 121.1 (7)  |
| C1 <sup>i</sup> —Sn1—C1 <sup>ii</sup>  |               | 110.43 (15) | (         | C15—C14—H14A |           | 119.4      |
| C1—Sn1—C1 <sup>iii</sup>               |               | 110.43 (15) | (         | C13—C14—H14A |           | 119.4      |
| C1 <sup>i</sup> —Sn1—C1 <sup>iii</sup> |               | 107.6 (3)   | (         | C14—C15—C16  |           | 120.4 (7)  |
| $C1^{ii}$ — $Sn1$ — $C1^{iii}$         |               | 110.43 (15) | (         | С14—С15—Н15А |           | 119.8      |
| C2—C1—Sn1                              |               | 176.5 (5)   | (         | С16—С15—Н15А |           | 119.8      |
| C1—C2—C3                               |               | 176.0 (7)   | (         | C17—C16—C15  |           | 120.3 (6)  |
| C8—C3—C4                               |               | 120.5 (8)   | (         | С17—С16—Н16А |           | 119.9      |
| C8—C3—C2                               |               | 121.8 (8)   | (         | C15—C16—H16A |           | 119.9      |
| C4—C3—C2                               |               | 117.5 (8)   | (         | C18—C17—C16  |           | 118.0 (7)  |
| C5—C4—C3                               |               | 118.2 (8)   | (         | С18—С17—Н17А |           | 121.0      |
| С5—С4—Н4А                              |               | 120.9       | (         | С16—С17—Н17А |           | 121.0      |
| С3—С4—Н4А                              |               | 120.9       | (         | C17—C18—C13  |           | 123.7 (9)  |

| C6—C5—C4                                                 | 119.8 (8)                | C17—C18—H18A                   | 118.1      |
|----------------------------------------------------------|--------------------------|--------------------------------|------------|
| С6—С5—Н5А                                                | 120.1                    | C13—C18—H18A                   | 118.1      |
| С4—С5—Н5А                                                | 120.1                    | C22—C21—Sn2                    | 177.4 (6)  |
| C7—C6—C5                                                 | 121.0 (7)                | C21—C22—C23                    | 176.2 (8)  |
| С7—С6—Н6А                                                | 119.5                    | C28—C23—C24                    | 119.5 (9)  |
| С5—С6—Н6А                                                | 119.5                    | C28—C23—C22                    | 119.8 (8)  |
| C6—C7—C8                                                 | 118.8 (6)                | C24—C23—C22                    | 120.2 (8)  |
| С6—С7—Н7А                                                | 120.6                    | C25—C24—C23                    | 117.7 (9)  |
| С8—С7—Н7А                                                | 120.6                    | C25—C24—H24A                   | 121.1      |
| C3—C8—C7                                                 | 121.6 (7)                | C23—C24—H24A                   | 121.1      |
| С3—С8—Н8А                                                | 119.2                    | C26—C25—C24                    | 121.8 (9)  |
| С7—С8—Н8А                                                | 119.2                    | C26—C25—H25A                   | 119.1      |
| C21—Sn2—C21 <sup>ii</sup>                                | 107.2 (3)                | C24—C25—H25A                   | 119.1      |
| C21—Sn2—C11                                              | 111.6 (2)                | C27—C26—C25                    | 120.6 (7)  |
| C21 <sup>ii</sup> —Sn2—C11                               | 110.4 (2)                | С27—С26—Н26А                   | 119.7      |
| C21—Sn2—C11 <sup>ii</sup>                                | 110.4 (2)                | C25—C26—H26A                   | 119.7      |
| C21 <sup>ii</sup> —Sn2—C11 <sup>ii</sup>                 | 111.6 (2)                | C26—C27—C28                    | 119.1 (6)  |
| C11—Sn2—C11 <sup>ii</sup>                                | 105.7 (3)                | С26—С27—Н27А                   | 120.4      |
| C12—C11—Sn2                                              | 171.1 (5)                | С28—С27—Н27А                   | 120.4      |
| C11—C12—C13                                              | 178.0 (8)                | C23—C28—C27                    | 121.0 (7)  |
| C18—C13—C14                                              | 116.6 (8)                | C23—C28—H28A                   | 119.5      |
| C18—C13—C12                                              | 120.1 (9)                | C27—C28—H28A                   | 119.5      |
| C1 <sup>i</sup> —Sn1—C1—C2                               | -145 (9)                 | C12—C13—C14—C15                | 178.2 (8)  |
| $C1^{ii}$ —Sn1—C1—C2                                     | -24 (9)                  | C13—C14—C15—C16                | -1.0 (11)  |
| C1 <sup>iii</sup> —Sn1—C1—C2                             | 97 (9)                   | C14—C15—C16—C17                | -0.2 (10)  |
| Sn1—C1—C2—C3                                             | -37 (17)                 | C15—C16—C17—C18                | 1.4 (10)   |
| C1—C2—C3—C8                                              | 34 (11)                  | C16—C17—C18—C13                | -1.5 (13)  |
| C1—C2—C3—C4                                              | -150 (10)                | C14—C13—C18—C17                | 0.4 (16)   |
| C8—C3—C4—C5                                              | -4.6 (12)                | C12—C13—C18—C17                | -177.0 (7) |
| C2—C3—C4—C5                                              | 179.6 (7)                | C21 <sup>ii</sup> —Sn2—C21—C22 | -71 (13)   |
| C3—C4—C5—C6                                              | 3.0 (11)                 | C11—Sn2—C21—C22                | 168 (13)   |
| C4—C5—C6—C7                                              | -0.7 (11)                | C11 <sup>ii</sup> —Sn2—C21—C22 | 51 (13)    |
| C5—C6—C7—C8                                              | -0.2 (10)                | Sn2—C21—C22—C23                | 53 (21)    |
| C4—C3—C8—C7                                              | 3.8 (12)                 | C21—C22—C23—C28                | 45 (12)    |
| C2—C3—C8—C7                                              | 179.5 (7)                | C21—C22—C23—C24                | -142 (11)  |
| C6—C7—C8—C3                                              | -1.4 (10)                | C28—C23—C24—C25                | -5.4 (14)  |
| C21—Sn2—C11—C12                                          | -141 (3)                 | C22—C23—C24—C25                | -177.7 (9) |
| C21 <sup>ii</sup> —Sn2—C11—C12                           | 100 (3)                  | C23—C24—C25—C26                | 3.1 (16)   |
| C11 <sup>ii</sup> —Sn2—C11—C12                           | -21 (3)                  | C24—C25—C26—C27                | -0.2 (15)  |
| Sn2—C11—C12—C13                                          | 2(23)                    | C25—C26—C27—C28                | -0.4 (11)  |
| C11—C12—C13—C18                                          | 4(21)                    | C24—C23—C28—C27                | 5.1 (13)   |
| C11—C12—C13—C14                                          | -173 (100)               | C22—C23—C28—C27                | 177.4 (6)  |
| C18—C13—C14—C15                                          | 0.9 (14)                 | C26—C27—C28—C23                | -2.1 (10)  |
| Symmetry codes: (i) $y$ , $-x$ , $-z$ ; (ii) $-x$ , $-z$ | y, z; (iii) $-y, x, -z.$ |                                |            |

sup-6

Hydrogen-bond geometry (Å, °)

| D—H···A                                                             | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|---------------------------------------------------------------------|-------------|-------|--------------|---------|
| C28—H28A…C1                                                         | 0.95        | 2.92  | 3.869 (9)    | 174     |
| C18—H18A···C11 <sup>iv</sup>                                        | 0.95        | 2.89  | 3.736 (11)   | 149     |
| C8—H8A···C21 <sup>ii</sup>                                          | 0.95        | 2.85  | 3.795 (9)    | 171     |
| Symmetry codes: (iv) $-y$ , $x$ , $-z+1$ ; (ii) $-x$ , $-y$ , $z$ . |             |       |              |         |







Fig. 2